Maternal Smoking During Pregnancy and Neonatal Behavior: A Large-Scale Community Study
Laura R. Stroud, Rachel L. Paster, Matthew S. Goodwin, Edmond Shenassa, Stephen Buka, Raymond Niaura, Judy F. Rosenblith and Lewis P. Lipsitt

Pediatrics 2009;123;e842-e848
DOI: 10.1542/peds.2008-2084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.pediatrics.org/cgi/content/full/123/5/e842
Maternal Smoking During Pregnancy and Neonatal Behavior: A Large-Scale Community Study

Laura R. Stroud, PhD, Rachel L. Paster, MEd, Matthew S. Goodwin, PhD, Edmond Shenassa, ScD, Stephen Buka, ScD, Raymond Niaura, PhD, Judy F. Rosenblith, PhD, Lewis P. Lipsitt, PhD

Objective. To investigate the influence of prospectively measured smoking during pregnancy on aspects of neonatal behavior in a large community sample.

Methods. Participants were mothers and infants from the Providence, Rhode Island, cohort of the National Collaborative Perinatal Project enrolled between 1960 and 1966. Mothers with pregnancy/medical complications and infants with medical complications and/or born premature or of low birth weight were excluded. The final sample included 962 mother-infant pairs, 23% of whom were black. Maternal smoking was measured prospectively at each prenatal visit. Neonatal behavior was assessed by using the Graham-Rosenblith Behavioral Examination of the Neonate. Items from the examination were reduced to 3 subscales: irritability, muscle tone, and response to respiratory challenge.

Results. Sixty-two percent of the sample reported smoking during pregnancy, with 24% of smokers reporting smoking 1 pack per day or more. We found a significant influence of maternal smoking exposure (none, moderate/less than 1 pack per day, heavy/1 pack per day or more) on irritability and muscle tone in the neonate, with exposed infants showing greater irritability and hypertonicity. Effects remained significant after controlling for significant covariates: maternal socioeconomic status, age, and race and infant birth weight and age. Posthoc tests suggested particular effects of heavy smoking on increased infant irritability and both moderate and heavy smoking exposure on increased muscle tone.

Conclusions. In a large community sample, exposure to maternal smoking was associated with increased irritability and hypertonicity in neonates. Exposure to maternal smoking did not influence neonatal response to respiratory challenge. This study is the largest-scale investigation to date of the effects of maternal smoking (heavy and moderate) on examiner-assessed neonatal behavior. Given the associations between both maternal smoking and infant irritability and later behavioral dysregulation, results have important implications for early identification and intervention with at-risk offspring.

Although rates of smoking have decreased over the last several decades, maternal smoking during pregnancy (MSDP) continues to be a major public health problem.1–3 MSDP has been linked to numerous adverse health outcomes in infancy including low birth weight, admission to neonatal intensive care, and increased risk for sudden infant death syndrome.3,4 MSDP has also been linked to long-term adverse behavioral outcomes in offspring including conduct disorder, attention and cognitive deficits, and substance use.5–9 However, relatively little is known about the effects of MSDP on behavioral deficits in infancy. Several small-scale, controlled studies investigating newborn response to structured, examiner-administered neurobehavioral examinations have revealed effects of maternal smoking on alterations in cry and soothability and increased muscle tone. In 2 studies in which MSDP was examined in the context of exposure to other drugs (alcohol, cocaine), exposed infants showed alterations in cry and increased muscle tone.10,11 Law et al12 published the first study...
specifically designed to examine the effects of MSDP on newborn neurobehavior. At 24 to 48 hours, smoking-exposed infants were more excitable, hypertonic, and more difficult to soothe compared with unexposed infants. An independent follow-up study also indicated persistent effects on soothability and excitability at 10 to 27 days. However, sample sizes were small and sampling frames were not designed to be representative.

In addition to small, controlled studies of infant response to examiner-administered neurobehavioral examinations, several population-based epidemiologic studies have suggested links between MSDP and maternal-report measures of excessive crying and infantile colic (IC). IC is a condition characterized by paroxysms of irritability, excessive crying, and muscle tension during the first 4 months of life. Søndergaard et al showed a twofold increased risk for colic in infants of mothers who smoked ≥15 cigarettes per day during pregnancy. Reijneveld et al found a nearly twofold increased risk for “excessive crying” in infants of mothers who smoked ≥10 cigarettes per day throughout pregnancy, although effects for maternal smoking were not significant after adjustment for confounders. Most recently, in multivariate analyses, Canivet et al found a 1.7-fold increased risk of colic related to maternal prenatal as opposed to postnatal smoking. However, maternal reports of infant crying and IC, particularly retrospective reports, may be confounded by factors linked with maternal smoking (eg, increased distress/stress).

Thus, smaller, controlled studies examining the effects of MSDP on response to examiner-administered neurobehavioral examination have shown effects on crying and hypertonicity, whereas large-scale, population-based studies using maternal report have shown links between maternal smoking and crying/colic. However, samples in small, controlled studies may be unrepresentative, and maternal reports of infant behavior in larger-scale studies may be prone to subjective bias. In the present study, we conducted the first large-sample investigation of prospectively assessed MSDP on neonatal behavior assessed with an examiner-administered, structured behavioral examination. In light of the burgeoning interest of the effects of MSDP in offspring, data collected through a sub-study of the National Collaborative Perinatal Project (NCPP) were examined with respect to influences of heavy and moderate maternal smoking. Minimal social sanctions against smoking during the period of data collection (1960–1966) allow for a unique distribution of maternal smoking, with smokers comprising more than 60% of the sample.

PATIENTS AND METHODS

Participants

One thousand two hundred fifty-six mother-infant pairs from the Providence, Rhode Island, site of the NCPP completed the neonatal behavior substudy. The NCPP was a multi-site, longitudinal, cohort study that involved prospective observation and examination of >50,000 pregnancies nationwide. Offspring were followed from birth through age 7. Mothers were recruited at the time of registration for prenatal care between 1960 and 1966. Enrollment for the Providence site was based on a sampling frame designed to yield a representative sample of women receiving prenatal care in Providence. Specifically, obstetric patients in a hospital clinic and private obstetric office were randomly selected, resulting in an average enrollment of 1 of 3 patients and a total of 4140 participants. Mothers and infants selected for the neonatal behavior study comprised approximately one fourth of participants in the overall Providence cohort. Informed consent for the neonatal examination was obtained in the postpartum unit of the hospital. There were no significant differences in maternal (age, race, socioeconomic status [SES], gravida, parity) or infant (gestational age, birth weight, Apgar score) characteristics between the sample selected for the neonatal behavior study and the overall Providence sample (all \(P = n ot \) significant).

Excluded from current analyses were mothers with pregnancy/medical complications or mothers who admitted to using other drugs or excessive alcohol during pregnancy (\(n = 107 \)), and infants born before 37 weeks’ gestational age (\(n = 127 \)), weighed <2500 g (\(n = 151 \)), or had medical complications. Gestational age was based on mothers’ last menstrual period determined through medical charts by using the best obstetrical estimate. Also excluded were infants whose neurobehavioral examination was considered by the examiner to be invalid (\(n = 15 \)), and, to focus on the immediate neonatal period, infants >3 days old (\(n = 77 \)). The final sample included 962 healthy mother-infant pairs. Infants born by both spontaneous vaginal and cesarean section deliveries were included.

Procedures

Maternal Assessment

Demographic information including race/ethnicity, education, occupation, and income was assessed during the first prenatal visit. A composite index of SES (range: 1 [lowest SES] through 10 [highest SES]) was derived from education (years) and occupation (manual, nonmanual, unemployed) of the head of household along with household income (based on US poverty threshold at the time) using methods developed by the US Census Bureau. MSDP was assessed at each prenatal visit up to time of delivery by study physicians. Mothers were asked whether they were currently smoking, and, if so, the number of cigarettes smoked per day. The validity of NCPP maternal smoking reports through comparison with serum cotinine levels has been shown to be excellent (\(\kappa = 83\%–87\% \)). On the basis of previous analyses in this cohort, mothers were classified into 3 groups on the basis of the maximum number of cigarettes smoked per day over the course of pregnancy: (1) no smoking; (2) moderate smoking (<1 pack per day: >0 and <20 cigarettes per day); and (3) heavy smoking (≥1 pack per day: ≥20 cigarettes per day).
Newborn Assessment

Birth weight, gestational age, Apgar scores, and medical complications were determined by NCPP examiners present at delivery. The Graham-Rosenblith Behavioral Examination of the Neonate was administered to newborns before discharge from the hospital. The Graham-Rosenblith examination was developed by Graham,24,25 and later adapted by Rosenblith26,27 to be administered by trained examiners. It is one of the earliest standardized assessments of infant behavioral responses to structured handling and a precursor to modern neurobehavioral assessments. The examination involves a standardized sequence of observations and manipulations of the infant. Rated on continuous Likert-type scales, items in the examination measure a variety of motor reflexes (eg, crawl), responses to sensory stimuli (eg, flashlight), active and passive muscle tone, responses to various types of respiratory challenge (eg, cotton over nose, cellophane over nose and upper lip), soft signs of neurologic damage (eg, nystagmus, strabismus), and irritability behavior. The examination has demonstrated acceptable levels of test-retest reliability,26 interscorer agreement,27 and has shown predictive validity with later psychologic and physiologic outcomes.28–31 Examiners included Dr Rosenblith and her trained assistant, Rebecca Anderson Huntington.

Using an approach combining statistical and conceptual aggregation, items from the Graham-Rosenblith examination were reduced to 3 subscales: irritability, muscle tone, and response to respiratory challenge. An exploratory principal components analysis was conducted using half of the sample (n = 473). Retained items were conceptually related to and loaded highly (> .5) on 1 of the 3 retained factors. The 3-factor structure was replicated in a confirmatory principal components analysis in the other half of the sample (n = 489). Subscale scores were created by taking the mean of items loading highly on each factor. The irritability subscale included 2 items (Cronbach’s α = .88): (1) amount of crying during the examination; and (2) subjective rating of infant irritability. The muscle tone scale included 6 items (α = .74) measuring active and passive muscle tone, including: (1) amount of resistance to arm displacement; (2) amount of resistance to leg displacement; (3) tension after a pull-to-sit manipulation; (4) supine tension; (5) tension in response to pushing of the infant’s feet; and (6) subjective rating of muscle tension throughout the examination. The Response to Respiratory Challenge Scale included 4 items (α = .79) assessing response to respiratory challenge over 3 trials. The items were: (1) response to nasal respiratory challenge; (2) response to brief occlusion of nose and part of mouth; (3) vigor of response to respiratory challenge; and (4) persistence of response to respiratory challenge.

Statistical Analysis

Analysis of variance was used to investigate differences between heavy, moderate, and nonsmoking groups on maternal and infant characteristics and on the 3 Graham-Rosenblith subscale scores. Infant gender was initially included as an additional independent variable in all analyses; however, because no significant smoking group by gender interactions emerged, we collapsed across gender in all analyses. Analysis of covariance was also conducted to adjust for significant covariates. Potential covariates were selected from demographic and medical characteristics (see Table 1) and were included if they differed significantly (P < .05) between smoking groups, or were significantly correlated with Graham-Rosenblith subscale scores. On the basis of these criteria, included covariates were maternal age, race, and SES and infant birth weight and age at time of the examination. Significant omnibus differences were followed by pairwise least significant difference (LSD) tests, appropriate for groups with differing numbers using adjusted means.

Table 1: Demographic and Medical Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Nonsmoking (n = 366), Mean (SD)</th>
<th>Light-Moderate Smoking (n = 451), Mean (SD)</th>
<th>Heavy Smoking (n = 145), Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal demographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal agea</td>
<td>25.0 (6.4)</td>
<td>23.3 (5.6)</td>
<td>24.3 (5.4)</td>
<td>.001</td>
</tr>
<tr>
<td>Maternal race</td>
<td></td>
<td></td>
<td></td>
<td>.001</td>
</tr>
<tr>
<td>White, %</td>
<td>74.3</td>
<td>72.5</td>
<td>92.4</td>
<td></td>
</tr>
<tr>
<td>Black, %</td>
<td>24.6</td>
<td>26.2</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Other, %</td>
<td>1.0</td>
<td>1.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SESa</td>
<td>4.8 (2.1)</td>
<td>4.5 (2.0)</td>
<td>4.1 (1.9)</td>
<td>.001</td>
</tr>
<tr>
<td>Pregnancy history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravida</td>
<td>2.5 (2.4)</td>
<td>2.2 (2.3)</td>
<td>2.6 (2.2)</td>
<td>.07</td>
</tr>
<tr>
<td>Parity</td>
<td>2.8 (1.9)</td>
<td>0.8 (0.5)</td>
<td>0.89 (0.6)</td>
<td>.25</td>
</tr>
<tr>
<td>Infant medical characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational age, wk</td>
<td>39.8 (2.8)</td>
<td>39.9 (2.6)</td>
<td>40.1 (2.9)</td>
<td>.41</td>
</tr>
<tr>
<td>Birth weight, g</td>
<td>3347 (562)</td>
<td>3134 (522)</td>
<td>2990 (466)</td>
<td>.001</td>
</tr>
<tr>
<td>1-min Apgar score</td>
<td>8 (2)</td>
<td>8 (2)</td>
<td>8 (2)</td>
<td>.65</td>
</tr>
<tr>
<td>5-min Apgar score</td>
<td>9 (1)</td>
<td>9 (1)</td>
<td>9 (1)</td>
<td>.55</td>
</tr>
</tbody>
</table>

The P values denote statistical significance of differences between groups (nonsmokers, moderate smokers, and heavy smokers) by 1-way analysis of variance.

* Characteristic with statistically significant (P < .05) differences between groups.
RESULTS

Sample Description
The average age of mothers in the final sample was 24 years (SD: 6). The sample was 76% white, 23% black, and 1% other. Thirty-eight percent of participants were nonsmokers; 62% were smokers, divided into moderate (76%) and heavy (24%) smoking groups. Less than 1% of smokers quit during pregnancy. Mean smoking level was 13 cigarettes per day (SD: 7) for the moderate smoking group and 35 cigarettes per day (SD: 8) for the heavy smoking group. Forty-seven percent of the infants were female. Average gestational age was 40.5 weeks (SD: 1.9). Average birth weight was 3340 g (SD: 434 g), and average infant age at the time of the examination was 1 day old (range: 0–3 days).

Demographic and Medical Characteristics According to Smoking Group
Demographic and medical characteristics of the sample according to maternal smoking group are shown in Table 1. Significant differences between groups emerged for maternal age, race, and SES. Mothers in the smoking groups were younger, more likely to be white, and of lower SES. There were no differences between groups in gravida or parity. Significant differences between maternal smoking groups emerged for infant birth weight. No significant differences in gestational age or Apgar scores were found.

Effects of Maternal Smoking on Graham-Rosenblith Summary Scales
Adjusted and unadjusted scores on the Graham-Rosenblith summary scales by maternal smoking group are shown in Table 2. Analyses of unadjusted and adjusted means revealed significant differences between groups in irritability ($F_{2,961} = 7.7$ and $F_{7,916} = 9.4$; unadjusted and adjusted for covariates, respectively; $P < .001$) and muscle tone ($F_{2,961} = 11.3$ and $F_{7,916} = 7.9$; $P < .005$). No significant effects of maternal smoking on response to respiratory challenge emerged. LSD tests conducted on adjusted means for irritability revealed a significant difference between the heavy and nonsmoking groups ($P < .01$) and between the heavy and moderate smoking groups ($P < .01$), suggesting a threshold effect of heavy (pack-a-day) maternal smoking on infant irritability (Fig 1A). LSD tests for infant muscle tone revealed significant differences between the moderate and nonsmoking groups ($P < .05$) and between the heavy and nonsmoking groups ($P < .05$), but no differences between moderate and heavy smoking groups. Results suggest an effect of any smoking on infant muscle tone (see Fig 1B).

DISCUSSION

MSDP remains an enormous public health concern. However, despite robust links between MSDP and child behavior deficits (eg, conduct disorder/externalizing behavior), no large-scale studies have addressed the
unique effects of maternal smoking on neonatal behavior. We analyzed data from the NCPP to provide the first large-scale community study to investigate the effects of prospectively measured MSDP on a clinical neonatal behavior examination. To our knowledge, the present study represents the largest study of examiner-assessed neonatal behavior in smoking-exposed infants; sample size for the present study is nearly 10 times larger than all previous studies. We found a significant influence of MSDP on infant irritability and muscle tone. Specifically, neonates exposed to heavy maternal smoking (≥1 pack per day) showed greater irritability compared with neonates exposed to moderate maternal smoking (<1 pack per day) or unexposed neonates. Neonates exposed to both heavy and moderate maternal smoking were also more hypertonic than unexposed neonates.

There are a number of notable strengths of this present study. First, the large sample size, diversity of SES, and representative nature of the sample support the generalizability of results. Second, prospective assessment of maternal smoking (at each prenatal visit), previous verification of maternal reports with serum cotinine, and decreased social sanctions against smoking during the period of data collection support the validity of maternal smoking reports. Third, the unique distribution of maternal smoking (62% smokers with one fourth smoking ≥1 pack a day) and decreased social sanctions against smoking at the time of data collection allowed for analyses of differential influence of moderate versus heavy smoking and examination of the effects of maternal smoking less confounded by SES than in more recent samples. Fourth, strict maternal and infant exclusion criteria leading to a healthy sample of infants (no group differences in Apgar scores or gestational age) allowed us to examine the effects of maternal smoking relatively unconfounded by health differences in infants. Finally, use of an examiner-administered behavioral examination (rather than maternal report) in this large-scale study allowed for increased validity and objectivity of behavioral outcome data.

Findings from the present study complement smaller-scale studies of MSDP and infant behavior but extend findings to a larger, more generalizable sample. Previous studies from our group have shown unique effects of maternal smoking on arousal/excitability, difficulty in soothing, hypertonicity, and signs of withdrawal in samples of healthy term infants where smokers and non-smokers were matched on SES, maternal age, and alcohol use. Additional studies examining the effects of maternal smoking in the context of other drug use have shown effects on cry quality as well as hypertonicity. Results from the present study highlight the influence of maternal smoking on infant irritability (confirming previous effects on cry, arousal/excitability, and difficulty soothing as well as hypertonicity in a larger, more generalizable sample. We can articulate several possible mechanisms to explain the consistent effects of MSDP on irritability and muscle tension. One possibility is that these outcomes represent acute effects/toxicity of nicotine. A second possibility is that irritability and muscle tension are part of a constellation of symptoms within a nicotine neonatal withdrawal syndrome. Effects on symptoms of abstinence in Law et al. in neonates of smokeless tobacco users, and in an intensive study of neonatal nicotine withdrawal over the first five days substantiate this possibility across studies and withdrawal scales. Third, effects may represent the initial signs of persistent behavioral dysregulation, leading to long-term behavioral impairments seen in previous studies. Finally, effects of prenatal nicotine exposure have been shown to be mediated by nicotinic acetylcholine receptors, which may modulate release of numerous neurotransmitters (ie, serotonin, norepinephrine), brain regions (brainstem, limbic, and cortical regions), and brain systems (arousal, stress systems) that may underlie early regulatory behaviors.

Results are also consistent with previous studies of MSDP and IC but extend findings to objective examiner-based infant behavioral assessment and to the early neonatal period. It has been theorized that IC and general infant fussiness may reflect more global and persistent difficulties with behavioral control and self-regulation. Suggestive of the global nature of the behavioral dysregulation, infants who cry excessively often also experience concurrent difficulties in other areas (eg, feeding and sleep). Parenting deficits may further exaggerate early behavioral differences. The combination of a fussy, tense infant with a smoking mother under higher stress with fewer resources could lead to strained mother-infant interactions during a critical period for maternal-infant bonding. This combination could lead to a negative cycle increasing the likelihood of further behavioral dysregulation in the infant/child. Highlighting the persistence of behavioral dysregulation over development, Wolke et al found that children who were described as persistent criers in infancy were more frequently in the borderline clinical range for hyperactivity symptoms and showed more conduct problems and negative emotionality than controls. Thus, although increased irritability and muscle tension may acutely indicate withdrawal or neurotoxic effects, in combination with parenting deficits, they may also represent early endophenotypic markers of risk for later behavioral dysregulation.

Although this study is large-scale and rigorous with important clinical and public health implications, we acknowledge 2 primary limitations. First, the original Graham-Rosenblith substudy of the NCPP was not designed to examine the influence of maternal smoking: groups were not matched on additional maternal/infant factors that might influence behavioral outcome. However, strict maternal/infant inclusion criteria and statistical control for infant birth weight likely substantially reduced additional prenatal and perinatal influences on behavioral outcomes. Second, although the Graham-Rosenblith examination was state-of-the-art for its time and a precursor to modern neurobehavioral assessment, more recent neurobehavioral examinations allow for assessment of a broader range of subtle effects of drug exposure. However, the fact that we found significant effects of maternal smoking by using an early behavioral
examination not designed to reveal deficits caused by drug exposure highlights the strength of effects.

CONCLUSIONS

The present study represents the largest study of examiner-assessed neonatal behavior in smoking-exposed infants. Maternal smoking was measured prospectively in a large community sample with a high proportion of smokers. Results reveal significant influences of maternal smoking on increased infant irritability and hyperactivity. No significant effects or differences were found in response to the respiratory occlusion challenge. That infants exposed to MSDP can be differentiated from their nonexposed counterparts at 3 days old highlights the possibility and importance of very early intervention and prevention efforts. Additional research is needed not only to investigate whether these effects are acute or persistent but also to continue to examine trajectories to long-term outcomes.

ACKNOWLEDGMENTS

Preparation of the manuscript was supported by National Institutes of Health grants R01 HD043844 (to Dr Stroud), P50 CA84719 (to Dr Niaura) and R40 MC03600 and Flight Attendant Medical Institute 32069 (to Dr Shenassa).

We gratefully acknowledge Stephanie Paton for administrative assistance and Kathy McGaffigan for programming assistance. We also thank Rebecca Anderson for smoking-exposed infants. Maternal smoking was measured prospectively in a large community sample with a high proportion of smokers. Results reveal significant influences of maternal smoking on increased infant irritability and hyperactivity. No significant effects or differences were found in response to the respiratory occlusion challenge. That infants exposed to MSDP can be differentiated from their nonexposed counterparts at <3 days old highlights the possibility and importance of very early intervention and prevention efforts. Additional research is needed not only to investigate whether these effects are acute or persistent but also to continue to examine trajectories to long-term outcomes.

REFERENCES

24. Graham FK. Behavioral differences between normal and traumatized newborns: I. The test procedures. Psychol Monogr. 1956;70(20–21):1–16
25. Graham FK, Matarazzo RG, Caldwell BM. Behavioral differences between normal and traumatized newborns: II. Standardization, reliability, and validity. Psychol Monogr. 1956;70(20–21):17–33
32. Hurt RD, Renner CC, Patton CA, et al. Ismik—a form of smokeless tobacco used by pregnant Alaska natives: nicotine...
34. Slotkin TA. If nicotine is a developmental neurotoxicant in animal studies, dare we recommend nicotine replacement therapy in pregnant women and adolescents? Neurotoxicol Teratol. 2008;30(1):1–19
Maternal Smoking During Pregnancy and Neonatal Behavior: A Large-Scale Community Study
Laura R. Stroud, Rachel L. Paster, Matthew S. Goodwin, Edmond Shenassa, Stephen Buka, Raymond Niaura, Judy F. Rosenblith and Lewis P. Lipsitt

Pediatrics 2009;123:e842-e848
DOI: 10.1542/peds.2008-2084

Updated Information & Services	including high-resolution figures, can be found at: http://www.pediatrics.org/cgi/content/full/123/5/e842
References	This article cites 42 articles, 11 of which you can access for free at: http://www.pediatrics.org/cgi/content/full/123/5/e842#BIBL
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s): Office Practice http://www.pediatrics.org/cgi/collection/office_practice
Permissions & Licensing	Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.pediatrics.org/misc/Permissions.shtml
Reprints	Information about ordering reprints can be found online: http://www.pediatrics.org/misc/reprints.shtml