Restenosis and Drug-Eluting Stents

ROBERT D. WINSLOW, M.D., SAMIN K. SHARMA, M.D., AND MICHAEL C. KIM, M.D.

Abstract

The implantation of intracoronary stents for the treatment of coronary atherosclerotic disease is one of the most common percutaneous procedures. While the procedure brings long-term benefit for a large percentage of patients, a significant number of patients experience in-stent restenosis (ISR). ISR may be caused by a number of biological and procedural factors, including lesion characteristics as well as co-existing disease states like diabetes. Many strategies have been developed to try to reduce the incidence of ISR. The primary methods include systemic pharmacologic treatments, as well as attempts at modifying stents to reduce their role in the development of ISR. Drug-eluting stents are one such modality, and are expected to become a widely used tool in the field of interventional cardiology. This review will focus on the pathophysiology of ISR and possible ways to prevent it, including drug-eluting stents.

Key Words: Restenosis, drug-eluting stents, review.

Introduction

The treatment of coronary artery disease remains one of the paramount problems in cardiology. In the year 2000, there were 1,025,000 percutaneous transluminal coronary procedures performed in the US, of which 456,000 included the placement of intracoronary stents (1). Stenting is rapidly becoming the preferred method for the percutaneous treatment of coronary artery disease, since it has distinct advantages over angioplasty alone. For example, stents prevent acute vessel closure and early vessel recoil, and improve the long-term patency of vessels. Rates of restenosis in a stented vessel are reported to be as low as 20% and as high as 40%, which is about half that of percutaneous transluminal coronary angioplasty (PTCA) alone (2–5).

One of the major risk factors for restenosis is diabetes, which doubles the incidence when compared to non-diabetic patients (6, 7). Other risk factors include the length of the stented segment and the size of the vessel, with smaller vessels having a higher rate of restenosis (8). There are other characteristics of the vessel itself that contribute to restenosis. Vessels that have undergone remodeling, as defined by intravascular ultrasound (vessel cross-sectional area at the lesion being greater than non-diseased segments), have a higher rate of restenosis, by at least 50%, after both PTCA and stenting (9, 10). There are also poorly understood patient factors that influence both the rate of progression of untreated lesions and restenosis, since patients who get restenosis of treated segments are more likely to have progression of other untreated diseased segments over the same time period (7). Other factors that contribute to the likelihood of restenosis include the amount of damage to the vessel wall during the procedure (11, 12) and the design of the stent itself (13–16).

In-Stent Restenosis

The pathophysiology of in-stent restenosis (ISR) has been well described. It is primarily due to hyperplasia of smooth muscle cells in the intimal layer of the vessel wall (so-called neointimal hyperplasia) and, to a much lesser extent, mural thrombus (17–22). On the molecular and cellular
levels, the initial insult is vascular injury caused by both inflation of intracoronary balloons and the metal of the stent itself (23–25). This causes both macrophages and polymorphonuclear neutrophils to migrate to the site of damage, where they release chemokines (19, 21, 26). These chemokines serve to increase the amount of matrix metalloproteinase, which leads to remodeling of the extracellular matrix and smooth muscle cell migration (27, 28). Smooth muscle cells are also stimulated to increase the expression of genes involved in cell division (29). It is both the interaction and the extent of these processes that lead to neointimal hyperplasia and ISR. Compared to restenosis after PTCA, the pathophysiology of ISR may be different. Histologic examination of atherectomy specimens shows a more cellular and proliferative response in ISR than in restenosis after PTCA (30). Stenting also raises the systemic levels of inflammatory markers such as C-reactive protein and interleukin-6 (31).

Efforts to Reduce ISR

Various methods have been employed in the animal lab, as well as in the clinical setting and catheterization lab to decrease the incidence of ISR. These methods include systemic administration of drugs, administration of radiation, and coating of stents with a variety of elements, compounds and drugs.

Systemic Administration of Drugs

Some of the first attempts to decrease ISR involved the use of systemic medications that were active against platelet and thrombus formation. While there are some data suggesting that inhibition of thrombus formation decreases neointimal hyperplasia (32), the results in clinical trials using such agents as ticlopidine and aspirin (ISAR trial) (33) and abciximab (ERASER trial) (34) have not shown a decrease in the incidence of ISR. The FLARE trial was designed to test the effects of a statin (fluvastatin) on ISR; it had little effect (35).

One of the more interesting attempts to control ISR is by the administration of systemic glucocorticoids to decrease inflammation and neointimal hyperplasia. A study by Lee et al. randomized patients to a single dose of methylprednisolone prior to stenting. At follow-up angiography, the rates of ISR were 17.5% in the steroid group, vs. 18.8% in the control group (36). The recently published IMPRESS trial took patients with elevated C-reactive protein levels 72 hours after stenting, and randomized them to receive 45 days of prednisone vs. placebo. The group that received prednisone had both a lower event rate as well as lower ISR (7% prednisone, 33% placebo) (37). This evidence suggests that patients with prolonged, active inflammation after stenting derive a benefit from systemic immunosuppression, and that inflammation plays a clinical role in neointimal hyperplasia.

Systemic antiproliferative agents have been studied sparingly in animal models. Everolimus, a macrolide antibiotic similar to rapamycin, was given to rabbits both before stenting and for one month after the procedure to study its effects on ISR. The groups receiving active drug had an approximately 45% reduction in neointimal thickness, but significant systemic side effects, mostly gastrointestinal. Histologic examination of arterial specimens demonstrated more healing of the endothelium and intimal wall than studies using coated stents (38).

While some systemic treatments show promise, early experiences did not demonstrate significant reduction in the rate of ISR. The concentrations of medicines at the site of pathology in the coronary artery may not have been high enough, and the side effects of systemic administration may have limited appropriate dosing. This led to the theory that coating of stents with compounds or medications may allow for local delivery of a substance in a concentration high enough to disrupt the restenotic process.

Principles of Coated Stents

Stents are made primarily from surgical-grade stainless steel. The first generation of coated stents added an element such as carbon or gold to the stent surface to give it different properties. The next generation of coatings consisted of polymers that could be used primarily as reservoirs for other drugs or substances. These matrices enabled the coating to be durable, uniform and able to reliably deliver doses, while controlling the kinetics of delivery. And they enable drugs to elute into the surrounding tissue over time frames of approximately one month (39–41). After the initial studies of these polymer coatings in animals, it was noted that the polymers themselves could increase inflammation and neointimal hyperplasia, compared to bare metal stents (42–44). The biocompatibility of both the matrix and the drug are important in understanding the effects on the vessel wall and ISR after implantation. The coatings themselves are not always stable during expansion and sterilization, which is another factor that contributes to the effects of coated stents (45). Therefore, the coatings must be stable both when applied to a
stent and during deployment, the matrix must be biocompatible and not increase ISR by itself, and the medicine must be delivered in the correct concentrations and with the proper kinetics.

The most common drugs applied to coated stents are anticoagulants (heparin), steroids, and antiproliferative agents like paclitaxel and rapamycin (Table 1).

Elemental Coatings

The first element used to coat stents was carbon, under the assumption that it might present a less thrombogenic surface to the artery (46). Initial animal data had shown both safety and a trend towards a decrease in restenosis and neointimal hyperplasia at 6 weeks (47). Nonrandomized human studies using the carbon-coated stent showed a restenosis rate of 11% in intermediate risk patients (47) and of 25% in high-risk patients (48). While not randomized or controlled, these results implied a trend towards a lower rate of ISR than with uncoated stents.

There is extensive experience in coating stents with gold. Gold has long been used as an anti-inflammatory agent in rheumatoid and psoriatic arthritis. Gold is also biocompatible and resists corrosion, and is more radiopaque and easier to see with X-ray cineangiography. Initial studies using gold-coated stents showed equivalency with uncoated stents (49, 50), but there was a suggestion that in high-risk patients, there was a higher incidence of ISR (49, 50). In a randomized trial of gold-coated stents vs. uncoated controls, there was no significant difference in acute or subacute events or in survival, on initial analysis (51). On clinical follow-up, there appeared to be an increase in adverse cardiac events as well as angiographic evidence of more ISR, in the gold-coated stent group (52, 53). When using intravascular ultrasound, neointimal tissue proliferation was detected more often in the patients with gold-coated stents than in those with bare metal stents (53, 54). Because of the discouraging results with gold-coated stents, they are no longer being aggressively pursued as a restenosis cure.

Stents Coated with Biocompatible Materials

Several trials have considered possible reduction in ISR with stents coated with silicon carbide and phosphorylcholine. Silicon carbide is an inert semiconductor that is both biocompatible and hemocompatible (55), and it is less thrombogenic than bare metal (56). The patients in the studies looking at silicon-carbide-coated stents had a limited number of follow-up angiograms, but the rate of ISR seemed to be similar to that with uncoated stents (57).

Phosphorylcholine is a phospholipid that is found in normal cells, and theoretically might be less thrombogenic or result in less neointimal hyperplasia, by presenting the vessel wall with a familiar surface. Animal data, however, suggests that it has little effect on the development of neointimal hyperplasia and ISR (58). Human studies in patients at high risk for ISR did show a lower than expected rate (6 – 17%), but many patients did not have follow-up angiograms, so the true magnitude of this effect is not known (59, 60).

Stents Coated with Anticoagulant Agents

Heparin has long been studied as a coating for metal stents, under the assumption that the heparin coating may decrease the thrombogenicity of the stent and may lead to less neointimal hyperplasia. Animal data supports the decreased thrombogenicity, but has produced conflicting data regarding its effects on ISR (61, 62). Further testing has shown that if multiple layers of heparin are used, there is less neointimal hyperplasia in an animal model of ISR (63). The MENTOR study took patients at low risk for restenosis and implanted heparin-coated stents. These stents had a rate of ISR similar to that of uncoated stents (approximately 22%) (64). Heparin-coated stents have also been studied in acute myocardial infarction, without glycoprotein IIb-IIIa antagonists or heparin as adjunctive therapy. There was no subacute thrombosis, and a 17% rate of ISR (65). The only trial randomizing patients to

<table>
<thead>
<tr>
<th>Coating</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocompatible</td>
<td>Inert and possibly anti-inflammatory</td>
</tr>
<tr>
<td>Biocompatible</td>
<td>Inert and possibly less thrombogenic</td>
</tr>
<tr>
<td>Biocompatible</td>
<td>Organic polymer possibly less thrombogenic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug Coatings</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticoagulants</td>
<td>Antithrombotic and possible SMC inhibition</td>
</tr>
<tr>
<td>Antimitotic agents</td>
<td>Mitotic inhibitor</td>
</tr>
<tr>
<td>Sirolimus</td>
<td>Immunosuppressive and SMC inhibition</td>
</tr>
</tbody>
</table>

Si= silicon, PC= phosphorylcholine, SMC= smooth muscle cell
heparin vs. uncoated stents had a similar rate of restenosis in both arms of the study, of approximately 30% (66). Overall, human data suggest that coating stents with heparin does decrease the rate of subacute thrombosis, but has little effect on ISR.

Stents Coated with Antiproliferative Agents

Paclitaxel

Paclitaxel is a derivative of taxol with antimitotic properties. It inhibits microtubule depolymerization, and therefore arrests the cell cycle and stops proliferation. Initial data from animal studies showed a significant effect on reducing ISR when stents were coated with paclitaxel, with a decrease in the rates from 35% to 5% (67) and a difference in late luminal loss from 51(27%) to 27(27%) of the vessel diameter (Fig. 1; 68).

There are a number of human studies using paclitaxel-coated stents (Table 2; 69 – 72). The ASPECT trial randomized 177 patients to bare-metal stents, and both low- and high-dose paclitaxel-coated stents. The results of this dose-finding study showed that the high-dose-coated-stent group had a binary restenosis rate of 4% vs. 27% for the control. The average diameter stenosis was 14% in the high-dose group and 39% in the control group (69). When the drug-coated vs. bare-metal stents were compared in an intravascular ultrasound (IVUS) substudy, the drug-coated stent group had significantly decreased neointimal hyperplasia (73). In ELUTES, 192 patients at low risk for restenosis were randomized to receive paclitaxel-coated stents at 4 different concentrations vs. the control group with bare-metal stents. There was a 3% restenosis rate in the high-dose group and a 21% rate in the control group (70). Not all trials with paclitaxel or its derivatives showed such promising results. The SCORE trial used stents coated with QP-2 (a taxane analogue similar to paclitaxel); the study was ended prematurely because of an increased risk of subacute, in-stent thrombosis. Angiographic data suggested that at 6 months the amount of neointimal proliferation was less, but the study was never completed (74).

TAXUS is a series of studies designed to look at the effectiveness of paclitaxel-coated stents on ISR. TAXUS-I randomized 30 patients to receive uncoated stents and 31 to receive paclitaxel-coated stents. The patients were at low risk for restenosis (3 – 3.5 mm vessels, requiring one stent), as evidenced by the 10% restenosis rate in the uncoated-stent group. The ISR rate in the paclitaxel group was 0%, but this did not achieve statistical significance. One of the only significant results of this study was a diameter stenosis at six months of 13.6±11.8% in the paclitaxel vs. 27.2±16.7% of the control stents (71). In the TAXUS-II trial, which used the same stent as TAXUS-I, 536 patients were randomized into 2 divisions, one of which was further randomized to receive a paclitaxel-coated stent with slow-release kinetics vs. uncoated stents. The other division received moderate-release paclitaxel vs. uncoated stents. All patients received aspirin and clopidogrel. The rates of ISR were approximately 20% in both control groups and 8% in both active drug groups at 6-month follow-up angiography (72). The TAXUS-III trial enrolled 28 patients, who were given up to

![Fig. 1. Schematic of smooth muscle cell cycle, and site of action of antiproliferative agents.](image-url)

TABLE 2

Randomized Trials for Primary Restenosis Using Paclitaxel

<table>
<thead>
<tr>
<th>Trial</th>
<th># of Patients</th>
<th>ISR Risk</th>
<th>ISR: Control</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPECT (69)</td>
<td>177</td>
<td>NR</td>
<td>27%</td>
<td>4%</td>
</tr>
<tr>
<td>ELUTES (70)</td>
<td>192</td>
<td>Low</td>
<td>21%</td>
<td>3%</td>
</tr>
<tr>
<td>TAXUS I (71)</td>
<td>30</td>
<td>Low</td>
<td>10%</td>
<td>0%*</td>
</tr>
<tr>
<td>TAXUS II (72)</td>
<td>536</td>
<td>“Standard”</td>
<td>20%</td>
<td>6%</td>
</tr>
</tbody>
</table>

NR= not reported
* p=ns
2 stents for the secondary treatment of ISR, but not for primary prevention. Twenty-five of these patients had follow-up angiography. There was a 16% rate of restenosis (4 of 25), and the loss of luminal diameter was statistically greater in those who received 2 stents (75). TAXUS-IV was a large, prospective trial that compared paclitaxel-coated stents to bare-metal stents in the treatment of de novo coronary stenoses in 1,314 patients. In 559 patients who had angiography at 9 months, restenosis was reduced from 26.6% to 7.9% (76).

Despite promising early results, there is some concern about the long-term outcomes with paclitaxel-coated stents. While decreasing the rate of ISR, histologic analysis of the vessels with paclitaxel-coated stents showed less healing of the vessel wall after stenting. There was chronic low-grade inflammation, poor healing of the endothelium, and intra-intimal hemorrhage (77). In one of the only published 12-month angiographic studies, there was a 60% rate of restenosis seen at follow-up angiography. Although the sample size was small (15 patients), the suggestion is that this anti-proliferative agent might only delay the onset of restenosis, or may cause late restenosis through different mechanisms, mainly delayed healing of the endothelium and vessel wall (78).

Rapamycin

Rapamycin (sirolimus) is a macrolide antibiotic that was discovered in a microbe on Easter Island. The molecule possesses anti-proliferative effects on smooth muscle cells by inhibiting growth-factor- and cytokine-induced cell division (79), a property that was noted in the early 1990s. The drug is attached to the metal of a stent, with an outer layer of biocompatible polymers that enable the drug to elute over a 30-day period (80). Initial results in animal studies showed a significant decrease (up to 50%) in ISR and amount of inflammation in lesions treated with stents coated with rapamycin (81, 82; Fig. 2).

The FIM (First in Man) study was a nonrandomized study of a rapamycin-coated stent (Table 3; 83–85). A cohort of 30 patients studied had a striking 0% ISR rate on angiography at 4 months (86, 87). Another 15-patient cohort had no ISR, and a 0% loss of diameter by IVUS at 6 months (88). In the composite of these groups, there were no adverse cardiac events over a 12-month clinical follow-up period.

The RAVEL study took 238 patients and randomized 120 to receive a rapamycin-eluting stent and 118 a bare-metal control. They were all treated with clopidogrel or ticlopidine, and only 10% of patients received a glycoprotein IIBIIIA inhibitor. The rate of ISR was 0% in the rapamycin group and 26.6% in the control group (89). The results were validated using IVUS, and the zero restenosis rate was true for some of the higher risk patients, those with small vessels (90) and those with diabetes (83).

The results of the largest trial in rapamycin-eluting stents, the SIRIUS trial, were recently reported. The trial took 1,101 patients with de-novo coronary

TABLE 3

Trials for Primary Restenosis Using Rapamycin

<table>
<thead>
<tr>
<th>Trial</th>
<th># of Patients</th>
<th>ISR Risk</th>
<th>ISR: Control</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIM (83)</td>
<td>45</td>
<td>NR</td>
<td>N/A</td>
<td>0%</td>
</tr>
<tr>
<td>RAVEL (84)</td>
<td>238</td>
<td>Moderate</td>
<td>27%</td>
<td>0%</td>
</tr>
<tr>
<td>SIRIUS (85)</td>
<td>1101</td>
<td>Moderate</td>
<td>35%</td>
<td>3%</td>
</tr>
<tr>
<td>diabetes subgroup</td>
<td>279</td>
<td>High</td>
<td>49%</td>
<td>8%</td>
</tr>
</tbody>
</table>

NR = not reported. N/A = not applicable

FIM = First in Man; RAVEL = RAndomized study with the sirolimus-eluting VElocity balloon-expandable stent in the treatment of patients with de novo native coronary artery Lesions; SIRIUS = SIRolImUS-coated Bx velocity balloon-expandable stent in the treatment of patients with de novo coronary artery lesions.
coronary lesions and randomized them to receive rapamycin-coated stents (556 patients) or uncoated controls (545 patients), of which 533 received coated stents and 525 bare metal stents. The rate of ISR was 35% in the control group vs. 3% in the rapamycin group at 8 months. There was a slightly higher rate of restenosis in the area immediately outside the stented segment in an additional 6%. The results were even more striking in diabetics, with an ISR rate of 49% in controls and 8% with rapamycin (85).

Rapamycin-eluting stents have also been applied to the treatment of ISR. A study by Degertekin et al. took 16 patients with ISR of 2.5–3.5 mm vessels; 4 patients had had previous brachytherapy for ISR. A total of 26 stents were placed. There was one sudden death, one late stent occlusion, and 3 instances of ISR in the 16 patients (84). These results compare favorably with those obtained with radiation therapy. However, further studies in the use of drug-eluting stents to treat ISR are needed.

Intracoronary Radiation Therapy

Intracoronary radiation therapy, or brachytherapy, has been studied primarily for treatment of ISR. The initial experiences were hampered by both the need for a high dose of radiation and a high rate of edge restenosis (“candy-wrapper” effect). After these problems were addressed, many studies using various forms of radiation have shown a benefit in secondary prevention of ISR. The SCRIPPS, GAMMA-1 and WRIST trials, using gamma radiation, and PREVENT, using beta radiation, significantly decreased secondary ISR (85, 92–94). The control patients who underwent PTCA of the segment had a 50–60% rate of restenosis, while those patients who underwent PTCA and radiation therapy had a 17–32% rate, thus preventing restenosis in an additional 50–60% of cases after treatment for ISR. When the procedure consists of rotational atherectomy and radiation treatment, a 10% rate of ISR has been reported (95). Interestingly, longer follow-up angiography on patients treated with radiation shows that after a significant decrease in restenosis at 6 months, there is progressive narrowing over the next 3 months, with an additional 20% of patients meeting criteria for ISR by the 12-month mark (96).

Discussion

The factors that influence vessel patency after a percutaneous procedure are numerous and complex. There are a number of biological factors: co-existing diabetes, vessel size and prior remodeling. Characteristics of the procedure also play a significant role, including the amount of damage to the vessel wall, ostial lesions, and the type of stent used. Coating of stents adds additional problems: the material itself and its biocompatibility, as well as the choice of drug, its pharmacologic effects and the pharmacokinetics of its delivery. Stenting itself reduces the rate of restenosis in percutaneous procedures, but because the overall rate of primary ISR remains near 20%, there is great interest in how to decrease it. The most promising results so far have been seen with stents coated with antiproliferative compounds, with a decrease in the rate of ISR of approximately another 50–60%. Yet there is a lack of long-term follow-up, and it is possible that these agents may only delay the phenomenon, not prevent it entirely.

Other treatments show promise, as the ability to modify multiple aspects of the restenotic cascade are mapped out. For example, anti-inflammatory agents, including steroids, may help to decrease primary ISR, without specifically attacking smooth muscle cell proliferation.

The treatment of ISR poses a problem for cardiologists. Most randomized trials show that the mechanical treatment of ISR results in a 50–60% rate of secondary stenosis. Primary biologic factors are the most likely reason that patients who have ISR are at the highest risk to restenose. Neither the coating of stents with antiproliferative agents nor the addition of brachytherapy has been able to eradicate the problem of secondary stenosis.

Drug-eluting stents coated with antiproliferative agents seem to be able to prevent early ISR in the vast majority of patients who are predisposed to its development. Thus, they will probably be widely used. Nonetheless, more long-term follow-up studies are needed to determine whether this strategy actually prevents or merely delays the process. Some patients may need additional therapeutic strategies to eliminate the problem.

Drug-eluting stents also add a significant cost to the stenting procedure, with a drug-eluting stent costing approximately an extra $2,000 (97). Restenosis impacts the cost of percutaneous interventions as well. It is estimated that the treatment of ISR costs $8,000–$28,000 per episode, which adds $1,500–$8,000 for each patient who receives a stent, regardless of whether they develop ISR (98). It seems economically viable to use drug-eluting stents for patients who need stenting, especially if only one stent is used and the patients’ risk of restenosis is high.
Because of cost issues, not all patients will be able to receive drug-eluting stents. Further research is needed to determine which subgroups will benefit most. Perhaps a formal recommendation from a national agency such as the American Heart Association or the American College of Cardiology will be of help.

References

