Bacterial Coinfection in Influenza
A Grand Rounds Review

Daniel S. Chertow, MD, MPH
Matthew J. Memoli, MD, MS

PATIENT PRESENTATION
The patient, a 58-year-old man, presented to a community hospital with fever, cough, myalgias, and shortness of breath that worsened over 5 days. The history was significant for past tobacco use. Temperature on presentation was 36.5°C, and physical examination revealed wheezing and rhonchi in bilateral lungs. A nasopharyngeal wash for viral testing and sputum for bacterial Gram stain and culture were obtained. Treatment for suspected community-associated pneumonia was initiated with moxifloxacin. Emergency department evaluation showed severe hypoxia, and the patient was transferred to a tertiary care center for further assessment.

On arrival at the receiving center, the patient’s arterial blood gas analysis showed a pH of 7.42, PCO₂ of 31 mm Hg, and PaO₂ of 59 mm Hg (fraction of inspired oxygen, 100%). Laboratory testing revealed findings consistent with severe sepsis: leukopenia (white blood cell count, 1.3 cells × 10⁹/L), thrombocytopenia (platelet count, 106 × 10⁹ cells/μL), acute kidney injury (creatinine level, 2.04 mg/dL [180.34 μmol/L]), liver injury (aspartate aminotransferase level, 308 U/L [5.14 μkat/L]; alanine aminotransferase level, 197 U/L [3.29 μkat/L]), coagulopathy (prothrombin time, 16.3 seconds; partial thromboplastin time, 41.1 seconds; international normalized ratio, 1.3), and tissue hypoperfusion (lactate level, 3.7 mmol/L). Chest radiography showed diffuse bilateral infiltrates (FIGURE 1).

The patient was intubated and admitted to the intensive care unit for hypoxic respiratory failure and subsequent vasopressor-dependent septic shock. Refractory respiratory failure was managed with high-frequency oscillatory ventilation, and shock was managed with high-dose norepinephrine. Initial sputum Gram stain showed gram-positive cocci in clusters, and intravenous vancomycin was started. Oseltamivir (75 mg by nasogastric tube) was also started.

Respiratory failure complicated by hemoptysis and progressive shock led to cardiac arrest. Cardiopulmonary resuscitation was initiated, with temporary return of spontaneous circula-
tion. A family decision for no further resuscitative efforts was made, and the patient died within 24 hours of admission. Polymerase chain reaction testing of an initial nasopharyngeal wash specimen was positive for 2009 pandemic influenza A(H1N1), and sputum and blood cultures were positive for methicillin-resistant Staphylococcus aureus (MRSA).

COMMENT

The 1918 influenza pandemic resulted in an estimated 50 million deaths worldwide. A review of 8398 autopsies performed during that time confirmed bacterial coinfection in nearly all deaths. The 2009 pandemic influenza A(H1N1) virus resulted in an estimated 284 400 deaths worldwide. Many deaths occurred in countries with limited medical services. Even in countries with advanced medical services, including in the United States, Canada, Spain, Argentina, Australia, and New Zealand, bacterial coinfection complicated between 18% and 34% of 2009 pandemic influenza A(H1N1) cases managed in intensive care units (ICUs) and up to 55% of fatal cases, based on published autopsy series.

This article describes the epidemiology of influenza and pneumonia in the United States over the past 30 years, emphasizing the continued central role of bacterial coinfection in severe and fatal cases. Clinical course, pathogenesis, and rational clinical management of severe coinfection are discussed.

Epidemiology of Influenza and Pneumonia and the Role of Bacterial Coinfection

The overall precise mortality rate associated with influenza and bacterial coinfection is unknown. The National Vital Statistics System collects and presents the leading causes of death in the United States. Cause of death, as typically determined by the treating physician at the time of death, is derived from International Classification of Diseases codes on death certificates, and aggregate data are presented annually. Deaths attributable to influenza and bacterial coinfection are not directly measured and so must be extrapolated from available data. Based on these extrapolated data, on average from 1976 to 2009, 66 324 (range, 45 030-91 871) deaths were attributed annually to the combined categories of influenza and pneumonia. Modeling estimates predict that on average 23 607 (range, 3349-48 614) deaths with underlying respiratory and circulatory causes from 1976 to 2007 in the United States were associated with influenza.

Based on National Vital Statistics System data, mortality rates from the combined categories of influenza and pneumonia are highest in individuals 65 years or older and have declined from 1976 to 2009 predominantly in the oldest and youngest age groups (FIGURE 2). Although influenza infection typically results in lower mortality rates in younger individuals, H3N2 influenza viruses that were prevalent in 1997 and 2003 (ie, A/Sydney[H3N2] and A/Fujian[H3N2]) and the emergence of the 2009 pandemic influenza A(H1N1) virus resulted in excess mortality in younger age groups.

Bacterial coinfection complicates approximately 0.5% of all influenza cases in healthy young individuals and at least 2.5% of cases in older individuals and those with predisposing conditions. Individuals at high risk of developing
influenza-related complications including coinfection include adults 65 years or older, children younger than 5 years, pregnant women, people who are morbidly obese (body mass index ≥40, calculated as weight in kilograms divided by height in meters squared), and people with preexisting medical conditions including chronic pulmonary, cardiovascular, renal, hepatic, neurologic, metabolic, or immune-suppressing conditions.17

Colonization of the nasopharynx with pathogenic bacteria may predispose to coinfection. Specifically, colonization with Streptococcus pneumoniae has been associated with increased risk of ICU admission or death in the setting of influenza infection,18 and coinfection with S aureus, which colonizes the nares of 30% of the adult population,19 has been associated with increased risk of death in adults and children infected with influenza.8,20 MRSA coinfection in particular has repeatedly been associated with severe disease and death in adults and children.20-24

Clinical Course and Microbiology of Severe Influenza and Bacterial Coinfection

The typical time course of influenza illness in healthy adults experimentally challenged with influenza virus is as follows: symptom onset occurs within 24 hours of influenza infection; peak viral shedding correlates with peak symptom severity occurring 2 to 3 days postinfection; and viral shedding abate by day 8 postinfection.25

In a series of 683 adults admitted to 35 ICUs in the United States with severe 2009 pandemic influenza A(H1N1) infection, 207 had clinical evidence of bacterial coinfection, as defined by presumed bacterial pneumonia documented in the medical record or a positive blood culture within 72 hours of ICU admission. The mean time from symptom onset to hospitalization in the coinfect group was 5.2 (SD, 4.9) days.20 Allowing for a 24-hour asymptomatic period, on average these individuals developed coinfection within the first 6.2 (range, 1.3-11.1) days of influenza infection. This time course of illness suggests that coinfection predominantly occurs during periods of high influenza viral shedding but may occur concurrently with or shortly after influenza infection.

The mean time from symptom onset to hospital admission in this series did not differ significantly between the coinfect group and the influenza-alone group (5.0 [SD, 4.5] days). Similarly, the prevalence of presenting symptoms of fever, cough, dyspnea, and myalgias did not differ between groups. One hundred fifty-four of the 207 patients (74%) with suspected coinfection had positive bacterial cultures. The pathogens most commonly isolated from respiratory cultures were S aureus (45%), S pneumoniae (16%), and Streptococcus pyogenes (4%). Sixty-two percent of the S aureus isolates were methicillin resistant.

In a series of 838 critically ill children with 2009 pandemic influenza A(H1N1) infection, 274 (33%) had clinical evidence of bacterial coinfection, defined as a diagnosis of bacterial pneumonia or other evidence of bacterial infection within 72 hours of pediatric ICU admission.20 One hundred eighty-three of the 274 patients (67%) with suspected coinfection had positive bacterial cultures. The pathogens most commonly isolated from respiratory cultures were S aureus (39%), Pseudomonas species (16%), S pneumoniae (8%), Haemophilus influenzae (7%), and S pyogenes (4%). Forty-eight percent of S aureus isolates were methicillin resistant. Eighty-seven percent of patients with Pseudomonas infection had chronic lung disease; many had tracheostomies in place.

Coinfection may also occur in the hospital setting following admission for influenza infection alone. Bacterial pathogens frequently isolated in hospital-associated coinfection include MRSA, P aeruginosa, Acinetobacter species, and other resistant enterobacteria.4,26 In summary, coinfection typically occurs within a few days of influenza infection at times of high viral shedding, presents similarly to severe influenza infection alone, and prominent coinfecting bacterial pathogens include S aureus, S pneumoniae, and S pyogenes, which commonly colonize the nasopharynx.

Pathogenesis of Coinfection

Synergistic lethality of influenza and bacterial coinfection has been observed in animal models since shortly after influenza viruses were first isolated in early 1930s.27,28 Influenza viral infection contributes to respiratory epithelial cell dysfunction and death through disruption of protein synthesis and induction of apoptosis.29-31 Viral neuraminidase cleaves respiratory epithelial cell sialic acids, contributing to increased bacterial adhesion and dissemination. This effect is reversed by neuraminidase inhibitors.32-34 PB1-F2, a proapoptotic influenza protein expressed by many strains—although not by 2009 pandemic influenza A(H1N1)—increases susceptibility to bacterial coinfection through unknown mechanisms.35 Proteases secreted by certain strains of S aureus cleave influenza hemagglutinin,36,37 a step required for multicyle viral replication. Propagation of virus along the respiratory tree impairs mucociliary clearance of bacteria from the lower respiratory tract,38,39 and epithelial cell death exposes the basal cell layer and basement membrane, allowing for increased bacterial adherence and invasion (FIGURE 3).36-44

Clinical Management

Clinical management of severe coinfection relies on measures to prevent, diagnose, and treat both influenza and bacterial infection. The following paragraphs and the BOX describe a logical approach to prevention, diagnosis, and treatment of severe coinfection.

Influenza Vaccine

Annual influenza vaccination is recommended for persons older than 6 months. In children aged 6 months through 8 years, 2 doses of vaccine are
Bacterial coinfection increases immune cell recruitment to the lungs. Impaired macrophage, neutrophil, and lymphocyte function contribute to disease progression.

Cellular injury and aberrant immune response lead to the development of invasive disease.

Coinfection reduces repair and regeneration of the epithelial cell layer.

Mucociliary dysfunction impairs clearance of bacteria from the lower respiratory tract.

Pathogenic bacteria are aspirated from the nasopharynx and bind to sites on the cell surface exposed by viral cleavage of sialic acids.

Viral-induced disruption of the epithelial cell layer exposes additional bacterial binding sites on basal cells and the basement membrane.

Mucociliary dysfunction impairs clearance of bacteria from the lower respiratory tract.

Cellular injury and aberrant immune response lead to the development of invasive disease.

Bacterial coinfection increases immune cell recruitment to the lungs. Impaired macrophage, neutrophil, and lymphocyte function contribute to disease progression.
recommended during their first season of vaccination after July 1, 2010. Evidence supporting efficacy and effectiveness of influenza vaccination for the prevention of severe influenza-related complications, including bacterial coinfection, hospitalization, ICU admission, and death, particularly in the high-risk elderly population, is relatively sparse and of variable quality.

Trials assessing efficacy of new vaccines are limited in that it is unethical to withhold vaccine from a placebo group, and observational studies are limited because of bias inherent in observational study design. A single randomized clinical trial (RCT) evaluating efficacy of influenza vaccine in community-dwelling individuals older than 60 years showed that vaccine was associated with protection against medically attended influenza illness. The incidences of clinical influenza were 2% and 3%, respectively (relative risk, 0.53 [95% CI, 0.39-0.73]). Prevention of bacterial coinfection was not evaluated. Observational studies have shown up to a 45% reduction in pneumonia hospitalizations and a 60% reduction in deaths following influenza vaccination. However, these studies have been criticized for their inability to adequately control for patients’ baseline health status. Despite data limitations, influenza vaccine remains the best available tool for prevention of severe influenza illness commonly associated with bacterial coinfection.

Pneumococcal Vaccine

The 23-valent pneumococcal polysaccharide vaccine (PPSV23) is recommended in the United States for adults 65 years or older and for persons aged 2 through 64 years with underlying medical conditions predisposing to serious pneumococcal infection. Pre-disposing conditions include but are not limited to functional or anatomical asplenia; chronic pulmonary, cardiovascular, renal, or hepatic disease; diabetes mellitus; tobacco use; and malignancy and other immune-suppressing conditions or medications. The 13-valent pneumococcal polysaccharide conjugate vaccine (PCV13) is recommended for children aged 2 through 59 months.

A single RCT has evaluated the efficacy of a multivalent pneumococcal polysaccharide vaccine for the prevention of influenza-associated pneumonia in 37 107 African infants. In that trial, a 9-valent conjugate vaccine was associated with 41% efficacy (P = .006) for the prevention of influenza-associated pneumonia. No similar RCT has been conducted among adults. However, a population-based observational study in individuals older than 65 years showed an association between combined influenza and pneumococcal vaccine and a reduction in hospital admissions for influenza or pneumonia and a reduction in pneumonia deaths relative to influenza vaccination or pneumococcal vaccination alone.

Indirect vaccine effects (ie, herd effects in unimmunized individuals) significantly reduce invasive pneumococcal disease in all age groups. Since the introduction of 7-valent pneumococcal conjugate vaccine in the United States in 2000 (now replaced by PCV13), rates of invasive pneumococcal disease have decreased in vaccinated as well as unvaccinated age groups. By 2007, invasive pneumococcal disease was reduced by 40% (13.3 to 8.0 per 100 000 population) in persons aged 18 through 49 years, by 18% (24.0 to 19.8 per 100 000 population) in persons 50 through 64 years, and by 37% (60.1 to 37.9 per 100 000 population) in persons 65 years or older.

Diagnosis

Diagnosis of coinfection should be considered in individuals with an influenza-like illness and lower respiratory tract signs or symptoms suggestive of pneumonia (eg, cough with dyspnea, tachypnea, or hypoxia) or evidence of sepsis. Typical, though nonspecific, symptoms of influenza illness include fever, cough, myalgias, malaise, and headache. Rapid antigen-based influenza diagnostics, which have false-negative rates of up to 70%, should not be relied on to rule out influenza infection, and although more accurate influenza diagnostics such as viral culture or molecular tests should be performed, treatment decisions should not await their results.

Epidemiology

Between 1979-2009 there were an average of 66 000 deaths per year attributable to coinfection with influenza and pneumonia. Bacterial coinfection is more common in the elderly, the very young, pregnant women, patients with pre-existing conditions, and morbidly obese patients.

Prevention

Influenza vaccination in all persons older than 6 mo is recommended. 23-Valent pneumococcal vaccine is recommended for adults older than 65 y; 13-valent pneumococcal polysaccharide conjugate vaccine is recommended for children aged 2-59 mo.

Treatment

Early empirical antiviral treatment and antibiotic treatment with a respiratory fluoroquinolone or a combination β-lactam plus a macrolide should be initiated in all individuals with suspected coinfection. Antibiotic coverage for methicillin-resistant *Staphylococcus aureus* should be initiated when patients have signs of necrotizing pneumonia, including rapid onset of acute respiratory distress or hemoptysis.

©2013 American Medical Association. All rights reserved.
tion from which a sample is collected (upper vs lower respiratory tract), because sampling of the nasopharynx late in the course of severe influenza infection has been associated with a 19% false-negative rate relative to concurrent sampling of the lower airway by bronchoalveolar lavage. In addition to suggestive clinical features, a demonstrable infiltrate on chest radiographs is required for the diagnosis of pneumonia; however, pattern of infiltrate cannot reliably differentiate between influenza occurring alone vs coinfection.

Microbiologic testing of sputum for Gram stain and culture should be performed in patients with suspected coinfection and clinical or radiographic evidence of pneumonia. Negative sputum culture may not reliably rule out bacterial coinfection. False-negative results occur in the setting of prior antibiotic use and poor-quality specimen collection or processing. Similar limitations apply to tracheal aspirate and bronchoalveolar lavage specimens. At a minimum, blood cultures should be obtained in patients with evidence of sepsis, and *S pneumoniae* urine antigen testing should be performed when available.

Antiviral Treatment

Early empirical antiviral treatment should be initiated in all individuals with suspected coinfection. Efficacy of oseltamivir and zanamivir for the treatment of influenza infection alone has been evaluated in multiple RCTs; however, lower respiratory tract complication was not the primary or secondary end point in these trials. A meta-analysis of 10 RCTs in patients with confirmed influenza infection found that oseltamivir use started within 36 hours of symptom onset was associated with a 55% reduction in the primary end point (4.6% vs 10.3% with placebo; *P < .001*) of lower respiratory tract complication (defined as bronchitis, lower respiratory tract infection, or pneumonia), resulting in initiation of antibiotic therapy 48 hours after the start of the study and before day 28. However, this result was attributable to reduction in bronchitis and not pneumonia. A statistically nonsignificant reduction in hospitalizations was observed. An independent reanalysis of these 10 trials plus an additional trial similarly found oseltamivir use associated with a 37% reduction in lower respiratory tract complications requiring antibiotic therapy in patients with confirmed influenza infection. Subgroup analysis of bronchitis vs pneumonia prevention was not reported. Validity of these studies has been challenged, given the possible influence of publication bias.

No RCT has evaluated the efficacy of neuraminidase inhibitors for the prevention of complications in hospitalized patients with influenza infection. An increasing number of observational studies, however, have found an association between oseltamivir use and reductions in ICU admission and death in this population. Earlier vs later administration has been associated with improved survival. A recent meta-analysis of observational studies of antiviral therapy for the treatment of influenza infection supports the association of antiviral therapy and improved survival from influenza infection, yet correctly points out that the confidence in the effects for decision making from these observational studies is low. However, the efficacy of antiviral therapy for the treatment of influenza infection is dependent on susceptibility of circulating influenza strains to available antiviral medications and the prevalence of antiviral-resistant infection could increase unpredictably.

Antibiotic Treatment

Patients with a clinical syndrome compatible with pneumonia with or without suspected influenza infection should receive initial empirical antibiotic treatment. Recommended empirical antibiotic choices for hospitalized patients with community-associated pneumonia that do not distinguish between presence or absence of influenza infection include a respiratory fluoroquinolone or a combination β-lactam (ie, ceftriaxone or cefotaxime) plus a macrolide. Empirical coverage for MRSA with vancomycin or linezolid should be initiated in patients with severe or necrotizing pneumonia and or sepsis. Clinical features of necrotizing pneumonia include hemoptysis, pleural effusion, rapid onset of acute respiratory distress, and leukopenia. Empirical antibiotic treatment for health care–associated pneumonia in patients with suspected or confirmed influenza infection should include coverage for MRSA and resistant gram-negative pathogens dependent on local antimicrobial patterns and susceptibility. Antibiotics should be tailored for specific bacterial pathogens isolated from blood or a high-quality sputum specimen.

Antibiotic treatment within 4 to 8 hours of hospital admission for community-associated pneumonia has been associated with reduced mortality in large observational studies and inappropriate use of initial empirical antibiotics for health care–associated pneumonia has been associated with increased mortality. Although optimal timing of antibiotic administration in patients with suspected or confirmed influenza and bacterial coinfection has not been determined, early administration should be targeted.

Supportive Care

Aside from early administration of antiviral medications and antibiotics, management of severe coinfection is largely supportive. Progressive hypoxia results in the need for mechanical ventilation in most patients admitted to the ICU with severe influenza infection with or without coinfection, and rescue modalities such as prone positioning, bi-level or high-frequency oscillatory ventilation, or extracorporeal membrane oxygenation have been used in cases in which hypoxia persists despite use of standard ventilator modes. Septic shock from invasive bacterial infection necessitates vasopressor use in more than one-third of critically ill patients with coinfection, and acute renal failure requiring renal replacement therapy occurs in up to 20%.
CONCLUSIONS

Influenza and bacterial coinfection result in significant morbidity and mortality. Influenza vaccine remains the best available tool for prevention of severe influenza illness commonly associated with bacterial coinfection and should be encouraged in individuals older than 6 months. PCV13 administered to children aged 2 through 59 months and PPSV23 administered to adults 65 years or older and to persons aged 2 through 64 years with underlying medical conditions reduce invasive pneumococcal disease through both direct and indirect herd effects. Despite these benefits, in a large observational study using US state inpatient databases, timing of highest 2009 pandemic influenza A/H1N1 virus activity from late August to mid December 2009 was associated with a significant increase in pneumococcal hospitalizations relative to a seasonal baseline from the previous 6 years in individuals older than 5 and younger than 65 years—those not routinely vaccinated against pneumococcal disease. Similarly, mortality rates from the combined categories of influenza and pneumonia increased significantly from prior seasonal baseline in this age range in 2009. Expanded use of PPSV23 in individuals older than 5 years and younger than 65 years may further reduce morbidity and mortality related to influenza and bacterial coinfection.

Severe bacterial coinfection presents similarly to severe influenza infection occurring alone but confers an increased risk of death in adults and children. Diagnosis of coinfection should be considered in individuals with an influenza-like illness and lower respiratory tract signs or symptoms suggestive of pneumonia, such as cough with dyspnea, tachypnea, or hypoaxia or with evidence of sepsis. Early empirical antiviral therapy should be administered to all individuals with suspected coinfection. Bacterial pathogens isolated in coinfection typically colonize the nasopharynx and cause disease during periods of high influenza viral shedding and clinical symptoms. MRSA is the bacterial pathogen most frequently isolated from critically ill patients with coinfection in the United States, and is not covered by standard antibiotic therapy for community-acquired pneumonia. Vancomycin or linezolid should be administered in addition to standard therapy for community-acquired pneumonia to patients with severe or necrotizing pneumonia, sepsis, or health care–associated coinfection. Delayed administration of antiviral or antibiotic therapy may result in worse outcomes.

Critical care supportive services including mechanical ventilation, vasopressor therapy, and renal replacement therapy are often required for the management of severe coinfection. Despite advances in supportive care, up to one-third of patients with coinfection admitted to ICUs in developed countries die. Further advances in vaccine technology for influenza and common bacterial copathogens (specifically S. aureus) are needed, as are improved rapid and accurate diagnostics for influenza and bacterial infection and novel therapeutics addressing the complex mechanisms contributing to influenza and bacterial copathogenesis.

Conflict of Interest Disclosures: The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.

Funding/Support: Dr Memoli is supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Role of the Sponsor: The National Institutes of Health had no role in the preparation, review, or approval of the manuscript.

Online-Only Material: The Author Audio Interview is available at http://www.jama.com.

Additional Contributions: We thank Henry Masur, MD (Critical Care Medicine Department, Clinical Center, National Institutes of Health), and Jeffery K. Taubenberger, MD, PhD (Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health) for critically reviewing the manuscript. These persons received no compensation for their contributions.

REFERENCES

BACTERIAL COINFECTION IN INFLUENZA

