Effectiveness and acceptability of lidocaine spray in reducing perineal pain during spontaneous vaginal delivery: randomised controlled trial

Julia Sanders, Rona Campbell and Tim J Peters

BMJ 2006;333;117-; originally published online 28 Jun 2006; doi:10.1136/bmj.38878.833241.7C

Updated information and services can be found at:
http://bmj.com/cgi/content/full/333/7559/117

These include:

References
This article cites 19 articles, 1 of which can be accessed free at:
http://bmj.com/cgi/content/full/333/7559/117#BIBL

1 online articles that cite this article can be accessed at:
http://bmj.com/cgi/content/full/333/7559/117#otherarticles

Rapid responses
You can respond to this article at:
http://bmj.com/cgi/eletter-submit/333/7559/117

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to BMJ go to:
http://bmj.bmjournals.com/subscriptions/subscribe.shtml
Effectiveness and acceptability of lidocaine spray in reducing perineal pain during spontaneous vaginal delivery: randomised controlled trial

Julia Sanders, Tim J Peters, Rona Campbell

Abstract

Objectives To evaluate the effectiveness and acceptability of a lidocaine spray in reducing perineal pain during spontaneous vaginal delivery.

Design Randomised controlled trial.

Setting Consultant led obstetric unit.

Participants 185 women who had a spontaneous vaginal delivery without epidural analgesia.

Interventions Topically applied local anaesthetic spray (93 women) and placebo spray (92 women).

Main outcome measure Primary outcome measure was pain during delivery (0-100 scale). The 16 secondary outcome measures included second degree perineal trauma during delivery, trauma of the genital tract, and dyspareunia by two months.

Results Lidocaine spray did not reduce pain during spontaneous vaginal delivery: mean 77 and 72 on a scale of 0-100 in the lidocaine and placebo groups, respectively (difference between means 4.8, 95% confidence interval −1.7 to 11.2). Lidocaine spray may reduce genital tract trauma during delivery, in particular second degree perineal trauma. The intervention was highly acceptable to the women and midwives.

Conclusions Although lidocaine spray applied to the perineum during spontaneous vaginal delivery did not reduce perineal pain, it was acceptable to both the women and the midwives.

Trial registration Current controlled trials ISRCTN99732966.

Introduction

Numerous studies have been published on analgesia during labour. Yet it is common for women having spontaneous vaginal delivery not to be offered analgesia for perineal pain during second stage labour. We compared the effectiveness of a local anaesthetic spray with a placebo spray in reducing perineal pain in women having a spontaneous vaginal delivery. We also ascertained the views of the women and midwives on acceptability of the sprays.

Participants and methods

Between February 2003 and May 2004 midwives provided written and verbal information about the trial to potentially eligible women more than 30 weeks pregnant who attended antenatal clinics in the area served by the participating hospital. (See bmj.com for exclusion criteria.)

Women who had expressed an interest in the trial were identified by hospital based midwives when they were admitted to hospital in labour or for induction of labour. After obtaining written consent, the midwife asked a member of the medical staff to prescribe the trial solution.

Trial interventions

The active trial solution was formulated to equate to Xylocaine spray (AstraZeneca, Bedfordshire). The active and placebo solutions were of similar appearance, consistency, and odour. Attending midwives were asked to apply five sprays of the solution, each of 0.1 ml, to the woman's perineum and inside aspect of the labia at least three minutes before delivery to have time to take effect. The number of sprays administered was recorded, and the time between application and delivery was calculated.

Outcome measures

The primary outcome was pain during delivery, self reported by the women before leaving the delivery suite and assessed on a 0-100 scale from 0 (no pain) to 100 (worst possible pain). The 16 secondary outcomes included second degree perineal trauma (including women who had an episiotomy); genital tract trauma and its management; and dyspareunia by two months (see bmj.com for other secondary outcomes). Midwives collected a sample of cord blood for ascertainment of lidocaine levels. They also completed a questionnaire on delivery. We obtained data on sociodemographic characteristics and the acceptability of the intervention to women through a questionnaire given 6-8 days after delivery. Acceptability to 14 midwives was ascertained through semistructured interviews, the transcripts of which were subjected to a thematic analysis.

Analysis

We analysed the data using SPSS. The primary comparative analyses were carried out on an intention to treat basis, with data analysts blind to treatment.
group. We used regression analysis to compare the outcomes between groups. Secondary analyses also involved regression models (see bmj.com for details). Perineal pain was the primary outcome. Before inspection of the data, we considered mechanisms by which the intervention might affect this outcome. As a consequence we identified perineal trauma as a secondary outcome of interest, the reason being that perineal pain could be closely related to perineal integrity. We therefore calculated the number needed to treat for perineal trauma, along with a 95% confidence interval.2

Results
Of the 2290 women delivering at the participating unit during the recruitment period, 680 were interested during their antenatal period in participating (see bmj.com). All 185 women approached in labour provided consent and were randomised: 93 to lidocaine spray and 92 to placebo spray.

Characteristics at baseline and delivery of the interventions
The women in the trial groups were similar for several baseline obstetric and sociodemographic characteristics (see bmj.com). Since these variables could be associated with the outcomes they were adjusted for in secondary analyses.

The mean (SD) number of sprays administered in both groups was 4.8 (0.9). Almost two thirds of women received the intervention as intended. The mean difference in time between intervention and delivery was also similar between the groups: lidocaine group 11.0 minutes and placebo group 12.5 minutes. Although these times varied between individual women (standard deviations of about 10 minutes), about 80% of women delivered within 15 minutes of receiving the spray in both groups.

Of the 88 cord blood samples collected from women who received lidocaine, 86 contained low levels of lidocaine and two contained levels at the upper limit of the therapeutic range (5.60 and 5.70 μg/ml; see bmj.com).

Ten women in the lidocaine group and six in the placebo group reported an unpleasant experience with the spray. In contrast, 32 women in the lidocaine group compared with 22 in the placebo group reported either a cooling or analgesic effect. The midwives unanimously considered perineal analgesia during second stage labour to be an acceptable addition to current practice.

Primary outcome
Mean pain scores were high and similar for both groups. No evidence was found of a sizeable reduction in pain using lidocaine spray compared with placebo spray (table); the suggestion was that pain may have been slightly increased.

Adjusting for imbalances at baseline had little effect on the results, as did restricting the analysis to the 124 women who received five doses of the lidocaine spray as intended at least three minutes before delivery (see bmj.com). Although power is limited for subgroup analysis, no evidence was found that the effect of the intervention differed by parity.

Secondary outcomes
Most secondary outcomes were similar between the groups (see bmj.com). However, a smaller proportion of women who received the lidocaine spray compared with the placebo spray sustained second degree perineal trauma. Of the 59 women in the lidocaine group and 67 in the placebo group who sustained any genital tract trauma, 17 and 14, respectively, experienced first degree perineal trauma, and 26 and 41 experienced second degree perineal trauma. Women in the lidocaine group were also less likely to experience dyspareunia when resuming sexual intercourse.

Discussion
Although a local anaesthetic (lidocaine) spray applied to the perineum of women during spontaneous vaginal delivery was acceptable to the women and midwives, it was not associated with any reduction in delivery pain; if anything the trend was to worse pain. The intervention may reduce the incidence of traumatic delivery of the fetal head and therefore prolongs this process. If so, the intervention could prevent trauma while not reducing pain.

The levels of lidocaine in the cord blood were almost always within acceptable limits except in two cases. These two exceptions may have occurred through contamination of the cord sample after delivery, placental transfer, or direct absorption through the fetal scalp during delivery. Placental transfer is unlikely at these levels. Contamination is also unlikely—the spray comprised free lidocaine in ethanol, which evaporates rapidly, and both lidocaine and ethanol were detected in the cord samples. Lidocaine hydrochloride does not readily permeate the skin of neonates, but free lidocaine as used here may do so.3 4

This trial was powered to detect a difference in the primary outcome of delivery pain. In the event, the
Deaths from injury in children and employment status in family: analysis of trends in class specific death rates

Phil Edwards, Judith Green, Ian Roberts, Suzanne Lutchman

Abstract

Objective To examine socioeconomic inequalities in rates of death from injury in children in England and Wales.

Design Analysis of rates of death from injury in children by the eight class version of the National Statistics Socio-Economic Classification (NS-SEC) and by the registrar general's social classification.

Setting England and Wales during periods of four years around the 1981, 1991, and 2001 censuses.

Subjects Children aged 0-15 years.

Main outcome measures Death rates from injury and poisoning.

Results Rates of death from injury in children fell from 11.1 deaths (95% confidence interval 10.8 to 11.5 deaths) per 100 000 children per year around the 1981 census to 4.0 deaths (3.8 to 4.2 deaths) per 100 000 children per year around the 2001 census.

Socioeconomic inequalities remain: the death rate from all external causes for children of parents classified as never having worked or as long term unemployed (NS-SEC 8) was 13.1 (10.5 to 16.5) times that for children in NS-SEC 1 (higher managerial/professional occupations). For deaths as pedestrians the rate in NS-SEC 8 was 20.6 (10.6 to 39.9) times higher than in NS-SEC 1; for deaths as cyclists it was 27.5 (6.4 to 118.2) times higher; for deaths due to fires it was 37.7 (11.6 to 121.9) times higher; and for deaths of undetermined intent it was 32.6 (15.8 to 67.2) times higher.

Contributors: See bmj.com.

Funding: This research was carried out while JS was in receipt of Medical Research Council/Wales Office of Research and Development special training fellowship in health services research, with additional funding for the trial provided by Wellbeing for Women and the Obstetric Anaesthetists Association.

Competing interests: None declared.

Ethical approval: This trial was approved by the Medicines Control Agency, the local research ethics committee and the participating NHS trust research and development directorate.

Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT
Phil Edwards lecturer in statistics
Ian Roberts professor of epidemiology
continued over

BMJ 2006;333:119–21

This is the abridged version of an article that was posted on bmj.com on 7 July 2006: http://bmj.com/cgi/doi/10.1136/bmj.38875.757488.4F

A table of the results stratified by age group can be found on bmj.com.